Citrate Synthase Expression Affects Tumor Phenotype and Drug Resistance in Human Ovarian Carcinoma

نویسندگان

  • Lilan Chen
  • Ting Liu
  • Jinhua Zhou
  • Yunfei Wang
  • Xinran Wang
  • Wen Di
  • Shu Zhang
چکیده

Citrate synthase (CS), one of the key enzymes in the tricarboxylic acid (TCA) cycle, catalyzes the reaction between oxaloacetic acid and acetyl coenzyme A to generate citrate. Increased CS has been observed in pancreatic cancer. In this study, we found higher CS expression in malignant ovarian tumors and ovarian cancer cell lines compared to benign ovarian tumors and normal human ovarian surface epithelium, respectively. CS knockdown by RNAi could result in the reduction of cell proliferation, and inhibition of invasion and migration of ovarian cancer cells in vitro. The drug resistance was also inhibited possibly through an excision repair cross complementing 1 (ERCC1)-dependent mechanism. Finally, upon CS knockdown we observed significant increase expression of multiple genes, including ISG15, IRF7, CASP7, and DDX58 in SKOV3 and A2780 cells by microarray analysis and real-time PCR. Taken together, these results suggested that CS might represent a potential therapeutic target for ovarian carcinoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of crocetin, extracted from saffron, in chemotherapy against the incidence of multiple drug resistance phenotype

Objective(s): Crocetin, one of the main substances of saffron extract, has anti-cancer effects. Drug resistance proteins (e.g. MRP1 and MRP2) are important reasons for the failure of cancer therapy. We intended to investigate the efficacy of crocetin on MRP1 and MRP2 activity in human ovarian cisplatin-resistant carcinoma cell line (A2780-RCIS).Materials and Methods: The cytotoxic effect of cro...

متن کامل

بررسی میزان بیان اونکوپروتئین گانکیرین در رده های سلولی سرطان تخمدان و معده مقاوم و حساس به داروهای ضد سرطان

Background and purpose: Multidrug resistance (MDR) phenotype is a major complication in cancer chemotherapy. Gankyrin is a key point molecule in cell cycle regulation and may contribute to drug-resistance phenotype of tumor cells. The aim of this study was to compare the basal Gankyrin expression level in ovarian and gastric drug-resistant cells with their parental drug-sensitive cells. Materi...

متن کامل

CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line

Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...

متن کامل

RNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line

Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...

متن کامل

Upregulation of Fas in epithelial ovarian cancer reverses the development of resistance to Cisplatin

This study was to investigate the role of Fas in the development of Cisplatin-resistant ovarian cancer. On the cellular level, Fas expression was significantly reduced in Cisplatin resistant A2780 (A2780/CP) cells compared with A2780 cells. Fas silence with siRNA would promote tumor cell lines proliferation, facilitate tumor cell cycle transition of G1/S, prevent cell apoptosis, and promote cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014